
http://reqT.org/reqT-cheat-sheet.pdf

Entity
General
Item An article in a collection, enumeration,
or series.

Label A descriptive name used to identify
something.

Meta A prefix used on a concept to mean be-
yond or about its own concept, e.g. meta-
data is data about data.

Section A part of a (requirements) docu-
ment.

TermAword or group of words having a par-
ticular meaning.

Context
Actor A human or machine that communi-
cates with a system.

App A computer program, or group of pro-
grams designed for end users, normally
with a graphical user interface. Short for
application.

Component A composable part of a system.
A reusable, interchangeable system unit or
functionality.

Domain An application area. A product and
its surrounding entities.

Module A collection of coherent functions
and interfaces.

Product Something offered to a market.
Release A specific version of a system of-
fered at a specific time to end users.

Resource A capability of, or support for de-
velopment.

Risk Something negative that may happen.
Service Actions performed by systems
and/or humans to provide results to stake-
holders.

Stakeholder Someone with a stake in the
system development or usage.

System A set of interacting software and/or
hardware components.

User A human interacting with a system.

Requirement
DataReq
Class An extensible template for creating
objects. A set of objects with certain at-
tributes in common. A category.

Data Information stored in a system.
Input Data consumed by an entity,
Member An entity that is part of another en-
tity, eg. a field in a in a class.

Output Data produced by an entity, e.g. a
function or a test.

Relationship A specific way that entities
are connected.

DesignReq
Design A specific realization or high-level

implementation description (of a system
part).

Screen A design of (a part of) a user inter-
face.

MockUp A prototype with limited functional-
ity used to demonstrate a design idea.

FunctionalReq
Function A description of how input data is

mapped to output data. A capability of a
system to do something specific.

Interface A defined way to interact with a
system.

State A mode or condition of something in
the domain and/or in the system. A config-
uration of data.

Event Something that can happen in the do-
main and/or in the system.

GeneralReq
EpicA large user story or a collection of sto-

ries.

Feature A releasable characteristic of a
product. A (high-level, coherent) bundle
of requirements.

GoalAn intention of a stakeholder or desired
system property.

Idea A concept or thought (potentially inter-
esting).

Issue Something needed to be fixed.
Req Something needed or wanted. An ab-

stract term denoting any type of informa-
tion relevant to the (specification of) inten-
tions behind system development. Short
for requirement.

Ticket (Development) work awaiting to be
completed.

WorkPackage A collection of (development)
work tasks.

QualityReq
Breakpoint A point of change. An impor-
tant aspect of a (non-linear) relation be-
tween quality and benefit.

Barrier Something that makes it difficult to
achieve a goal or a higher quality level.

Quality A distinguishing characteristic or
degree of goodness.

Target A desired quality level or goal .

ScenarioReq
Scenario A (vivid) description of a (possi-

ble future) system usage.
Task A piece of work (that users do, maybe

supported by a system).
Test A procedure to check if requirements
are met.

Story A short description of what a user
does or needs. Short for user story.

UseCase A list of steps defining interactions
between actors and a system to achieve a
goal.

VariabilityReq
VariationPoint An opportunity of choice
among variants.

Variant An object or system property that
can be chosen from a set of options.

RelationType
binds Ties a value to an option. A configu-

ration binds a variation point.
deprecatesMakes outdated. An entity dep-

recates (supersedes) another entity.
excludes Prevents a combination. An entity

excludes another entity.
has Expresses containment, substructure.

An entity contains another entity.
helps Positive influence. A goal helps to ful-

fil another goal.
hurts Negative influence. A goal hinders

another goal.
impacts Some influence. A new feature im-

pacts an existing component.
implements Realisation of. A module im-

plements a feature.
interactsWith Communication. A user in-

teracts with an interface.
is Sub-typing, specialization, part of an-

other, more general entity.
precedes Temporal ordering. A feature pre-

cedes (is implemented before) another fea-
ture.

requiresRequested combination. An entity
is required (or wished) by another entity.

relatesTo General relation. An entity is re-
lated to another entity.

superOf Super-typing, generalization, in-
cludes another, more specific entity.

verifies Gives evidence of correctness. A
test verifies the implementation of a fea-
ture.

1

http://reqT.org/reqT-cheat-sheet.pdf


http://reqT.org/reqT-cheat-sheet.pdf

Attribute
StringAttribute
Code A collection of (textual) computer in-
structions in some programming language,
e.g. Scala. Short for source code.

Comment A note that explains or discusses
some entity.

Deprecated A description of why an entity
should be avoided, often because it is su-
perseded by another entity, as indicated by
a ’deprecates’ relation.

Example A note that illustrates some entity
by a typical instance.

Expectation The required output of a test
in order to be counted as passed.

FileName The name of a storage of serial-
ized, persistent data.

GistA short and simple description of an en-
tity, e.g. a function or a test.

Image (The name of) a picture of an entity.
Spec A (detailed) definition of an entity.
Short for specification

Text A sequence of words (in natural lan-
guage).

Title A general or descriptive heading.
Why A description of intention. Rationale.

IntAttribute
Benefit A characterisation of a good or
helpful result or effect (e.g. of a feature).

Capacity The largest amount that can be
held or contained (e.g. by a resource).

Cost The expenditure of something, such as
time or effort, necessary for the implemen-
tation of an entity.

Damage A characterisation of the negative
consequences if some entity (e.g. a risk)
occurs.

Frequency The rate of occurrence of some
entity.

MinTheminimum estimated or assigned (rel-
ative) value.

Max The maximum estimated or assigned
(relative) value.

Order The ordinal number of an entity (1st,
2nd, ...).

Prio The level of importance of an entity.
Short for priority.

Probability The likelihood that something
(e.g. a risk) occurs.

ProfitThe gain or return of some entity, e.g.
in monetary terms.

Value An amount. An estimate of worth.

StatusValueAttribute
Status A level of refinement of an entity
(e.g. a feature) in the development process.

VectorAttribute
Constraints A collection of propositions
that restrict the possible values of a set of
variables.

Tree-like Model Structure

Elem
Model

def toVector: Vector[Elem]

Relation

val entity: Entity
val link: RelationType
val tail: Model

Node

Attribute[T]

val value: T

Entity

val id: String

Model Scripting
Model Construction
A Model has a body within parentheses with
a comma-separated sequence of zero or more
Elems. A relation links an Entity with a sub-
model body including a sequence of zero or
more Elems.

var m = Model(
Title("example"),
Feature("helloWorld") has
Spec("Print hello msg."),

Stakeholder("x") requires (
Req("nice") has (
Prio(10),
Gist("gimme this")),

Req("cool") has (
Prio(5),
Gist("better have it")

)
)

)

Model Operations
Add element to a Model m:

m + (Req("r") has Prio(42))

Remove elements from a Model m:

m - Req("nice") - Title

Collecting Int values in a Vector[Int]:

m.collect{case Prio(i) => i}

Collecting entities in a new Model:

m.collect{case r: Req => r}.
toModel

Transforming Entity type in a new Model:

m.transform{
case Req(id) => Feature(id)

}

Release Constraint Solving
val simplePlan = Model(
Stakeholder("X") has (
Prio(1),
Feature("1") has Benefit(4),
Feature("2") has Benefit(2),
Feature("3") has Benefit(1)),

Stakeholder("Y") has (
Prio(2),
Feature("1") has Benefit(2),
Feature("2") has Benefit(1),
Feature("3") has Benefit(1)),

Release("A") precedes Release("B"),
Resource("dev") has (
Feature("1") has Cost(10),
Feature("2") has Cost(70),
Feature("3") has Cost(40),
Release("A") has Capacity(100),
Release("B") has Capacity(100)),

Resource("test") has (
Feature("1") has Cost(40),
Feature("2") has Cost(10),
Feature("3") has Cost(70),
Release("A") has Capacity(100),
Release("B") has Capacity(100)),

Feature("3") precedes Feature("1"))
val problem = csp.releasePlan(simplePlan)
val solution =
problem.maximize(Release("A")/Benefit)

val sortedSolution =
solution.sortByTypes(Release, Feature,

Stakeholder, Resource)

Model Export
reqT.exporter.toGraphVizNested(m).
save("filename.dot")

Older than reqT v3.1.7 use reqT.export

Available exporters:

toGraphVizNested
toGraphVizFlat
toPathTable
toHtml
toText
toLatex
toQuperSpec

2

http://reqT.org/reqT-cheat-sheet.pdf

